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1 Abstract

Smaller vision-language models (VLMs) are becoming increasingly important for privacy-focused,
on-device applications due to their ability to run efficiently on consumer hardware for processing
enterprise commercial documents and images. These models require strong language understanding
and visual capabilities to enhance human-machine interaction. To address this need, we present
H2OVL-Mississippi, a pair of small VLMs trained on 37 million image-text pairs using 240 hours of
compute on 8 × H100 GPUs. H2OVL-Mississippi-0.8B is a tiny model with 0.8 billion parameters
that specializes in text recognition, achieving state of the art performance on the Text Recognition
portion of OCRBench and surpassing much larger models in this area. Additionally, we are releasing
H2OVL-Mississippi-2B, a 2 billion parameter model for general use cases, exhibiting highly com-
petitive metrics across various academic benchmarks. Both models build upon our prior work with
H2O-Danube language models, extending their capabilities into the visual domain. We release them
under the Apache 2.0 license, making VLMs accessible to everyone, democratizing document AI and
visual LLMs.

H2OVL-Mississippi model collection:
https://huggingface.co/collections/h2oai/h2ovl-mississippi-66e492da45da0a1b7ea7cf39

2 Introduction

The field of vision-language models (VLMs) has rapidly evolved, with significant strides made in connecting
visual encoders to language models to enhance the capabilities of AI in handling diverse visual and textual tasks.
While current state-of-the-art models deliver impressive results, they often depend on large architectures that
require extensive computational resources. The H2OVL-Mississippi models seek to address this limitation by
offering efficient, smaller-scale alternatives that can compete with larger models across various vision-language
tasks, especially in Optical Character Recognition (OCR) and document analysis. This paper introduces the
H2OVL-Mississippi-0.8B and H2OVL-Mississippi-2B models, detailing their architecture, training methodology,
and performance evaluations to highlight their efficiency and adaptability for real-world multimodal tasks. By
adopting a data-driven approach, the H2OVL-Mississippi models provide a scalable and efficient solution for
applications in document understanding and multimodal reasoning.

The development of the H2OVL-Mississippi models is guided by two primary goals: specialization and versatility.
The H2OVL-Mississippi-0.8B model is specifically optimized for OCR and document-centric tasks, to provide
high accuracy and efficiency in structured information extraction, even in resource-constrained environments.
The H2OVL-Mississippi-2B model is designed to be a general-purpose vision-language model, capable of
performing a wide range of multimodal tasks such as image captioning, visual question answering (VQA), and
reasoning. By combining these two approaches, the H2OVL-Mississippi series aims to deliver models that are
not only task-specific but also versatile enough to adapt to diverse visual and textual challenges, ensuring a
comprehensive solution for multimodal AI applications.

∗The first three authors contributed equally.

Technical Report, work in progress.
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3 Related Works

Early VLMs focused on connecting vision encoders to language models through trainable connectors, allowing
models to align visual and textual representations. Notable examples include Flamingo [1] and BLIP-2 [2], which
achieved strong results in tasks such as image captioning and visual question answering (VQA) by leveraging
pre-trained vision and language components.

LLaVA [3] extended this approach by introducing multimodal instruction tuning, enabling models to follow
human instructions across visual tasks, such as interactive dialogue about images. This capability set a new
benchmark for multimodal interaction and improved the model’s ability to transfer knowledge across tasks.

Further advancements were made with models like PaLI [4], Florence-2 [5], and Unified-IO 2 [6], which jointly
trained vision and language components instead of relying on frozen pre-trained encoders. This joint training
approach improved the model’s performance on complex, cross-modal tasks such as document parsing and
visual reasoning.

Decoder-only models, like Fuyu [7] and CM3 [8], streamlined the architecture by using a single transformer to
process both image and text inputs. This simplification increased training and inference efficiency, making these
models attractive for scenarios where computational resources are limited.

Recently, encoder-decoder models, like Qwen2-VL [9] utilize a Naive Dynamic Resolution mechanism, enabling
it to process images at varying resolutions by dynamically adjusting the number of visual tokens. This allows
the model to handle complex visual tasks such as detailed image captioning and OCR with improved efficiency
and accuracy. Similarly, InternVL 1.5 [10] adopts a high-resolution strategy, breaking down images into tiles,
which improves the model’s ability to capture fine details across a range of vision tasks. Other models, such
as Mini-Monkey [11], tackle high-resolution image processing challenges by introducing multi-scale adaptive
cropping, which allows models to capture small or irregularly shaped objects more accurately.

The H2OVL-Mississippi-0.8B and H2OVL-Mississippi-2B models build on these advancements by utilizing
large and diverse datasets to further enhance multimodal performance, ensuring effective handling of a broad
range of visual and textual tasks.

4 Model Architecture

Figure 1: H2OVL-Mississippi Model Architecture: The diagram illustrates the procedure for process-
ing input images and text to the LLM. The input image undergoes resizing and cropping at various
aspect ratios: (a) Resizing and cropping to the closest original size and aspect ratio, (b) Resizing and
cropping to a different aspect ratio, and (c) Resizing the entire image to a fixed 448x448 pixels.

The architecture of the H2OVL-Mississippi model takes inspiration from the LLaVA [3] and InternVL [10] series,
following a ViT-MLP-LLM configuration, as shown in Figure 1. It uses a transformer-based setup comprising a
vision encoder, an MLP layer, and a large language model (LLM). The vision encoder extracts features from
images, while the LLM generates text. The MLP layer acts as a bridge between the vision encoder and the LLM.

Specifically, the H2OVL-Mississippi architecture integrates the InternViT-300M as its vision encoder and
supports two variations for the language model: Danube-2 (1.8 billion parameters) [12] and Danube-3 (500
million parameters) [13], providing flexibility based on computational requirements.

The architecture uses a dynamic resolution strategy [10] that adjusts image processing based on the image’s
aspect ratio and resolution. It divides each image into 448x448 pixel tiles, using between 1 and 6 tiles for full
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coverage of the image (Figure 1a). During training, the number of tiles varies, producing 256 to 1,590 visual
tokens, allowing the model to adapt to different image dimensions while optimizing token usage and preserving
key details.

To enhance computational efficiency, the architecture incorporates a pixel shuffle operation applied to the Vision
Transformer (ViT) embeddings, reducing the number of visual tokens per 448x448 tile to 256. Typically used
in image super-resolution tasks to rearrange and combine pixels from low-resolution images, pixel shuffling is
adapted here to efficiently decrease the token count while maintaining significant information from each tile.
This adaptation ensures effective processing of high-resolution images with reduced computational demands.

Furthermore, the H2OVL-Mississippi-2B model uses a multi-scale adaptive cropping (MSAC) strategy, as
outlined in the Mini-Monkey report [11]. MSAC addresses the sawtooth effect [11], a common issue in
traditional cropping techniques, by generating multi-scale representations. This capability enables the model
to capture features at different scales, improving performance on tasks involving small or irregularly shaped
objects, such as document parsing and image recognition. Similar to the dynamic resolution strategy, MSAC
varies the number of tiles from 2 to 6, as illustrated in Figure 1(b).

Finally, a resized version of the original image, scaled to 448x448 pixels, is included in the set of tiles to provide
the model with a complete view of the image, improving its ability to capture the overall layout information
(Figure 1(c)).

These advanced image processing techniques enable the model to balance efficiency and visual detail, ensuring
strong performance across multimodal tasks. The dynamic resolution and MSAC strategies allow it to adapt
to diverse image sizes and aspect ratios, optimizing token use while preserving image context. This versatility
makes H2OVL-Mississippi a scalable and effective solution for tasks that require information extraction from
fine-grained images.

5 Training Methodology

Training a vision language model involves learning complex relationships between images and corresponding
texts by jointly optimizing a pre-trained vision encoder (ViT), a pre-trained language model (LLM), and a
randomly initialized MLP projector that connects the two. LLaVA [3] demonstrated that pre-training the
connector with image-caption pairs significantly enhances performance outcomes. Qwen2-VL [9] highlighted
the benefits of pre-training visual components on large-scale image-text datasets, improving the model’s capacity
to integrate and interpret multimodal information effectively. Following this evidence, the H2OVL-Mississippi
models employ a pre-training and fine-tuning strategy: pre-training focuses on aligning visual and textual
features, while fine-tuning is dedicated to task-specific modeling. In the following sections, we describe the
intent, training method and dataset distribution for the H2OVL-Mississippi-0.8B and H2OVL-Mississippi-2B
models.

(a) (b)

Figure 2: Data distribution across tasks during pre-training for the H2OVL-Mississippi models: (a)
H2OVL-Mississippi-0.8B emphasizes OCR and document QA (44%), and general QA (29%), while (b)
H2OVL-Mississippi-2B focuses on OCR and document QA (58%), and captioning (39%).
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(a) (b)

Figure 3: Data distribution across tasks during fine-tuning for the H2OVL-Mississippi models: (a)
H2OVL-Mississippi-0.8B concentrates heavily on OCR and document QA (72%), with chart, figure, and table
tasks (17%) as the second focus, whereas (b) H2OVL-Mississippi-2B balances various tasks, with general QA
(39%), reasoning (17%), and OCR and document QA (24%) being the key components.

5.1 H2OVL-Mississippi-0.8B Model

The H2OVL-Mississippi-0.8B model is designed specifically for OCR and document understanding, with a focus
on accurately extracting, recognizing, and interpreting text from images, particularly in complex and structured
visual contexts. Its training methodology and datasets are tailored to optimize performance for these tasks.

• Pre-training: The pre-training phase utilizes 11 million conversation examples covering a diverse
range of tasks, including general QA, image captioning, OCR, and reasoning, as depicted in Figure 2a.
This diverse dataset helps the model achieve a well-balanced and unbiased state, establishing a strong
foundation for the subsequent OCR-specific fine-tuning. The pre-training process consists of two
steps. In step1, only the MLP projector is optimized, while both the ViT and LLM remain frozen,
using approximately 3 percent of the pre-training dataset. In step 2, the MLP and LLM are jointly
optimized, with the ViT still frozen, this time using the full pre-training dataset.

• Fine-tuning: The fine-tuning dataset consists of approximately 8 million examples, with a strong
emphasis on OCR tasks such as text recognition, document parsing, and structured information
extraction. To enhance the model’s specialization in OCR, other general task datasets are excluded, as
illustrated in Figure 3a. During this stage, all three components (ViT, MLP, and LLM) are optimized
jointly.

Table 1 presents the detailed data statistics, and the training hyperparameters are summarized in Table 2. For
brevity, the pre-training step that focused solely on optimizing the MLP is not included.

5.2 H2OVL-Mississippi-2B Model

The H2OVL-Mississippi-2B model is designed to excel in document intelligence tasks while maintaining
versatility as a general-purpose visual language model. During data composition, a significant portion (58%) of
OCR and document-related data was incorporated in pre-training to optimize document visual feature extraction
and alignment. In the fine-tuning stage, we balanced the data distribution to ensure the model’s performance
across a diverse range of domains and tasks.

• Pre-training: The pre-training dataset consists of 5 million conversation pairs, focusing on three key
areas: OCR data, image captioning and text-only datasets. The OCR data trains the model to recognize
and interpret text embedded within images, improving its skills in document understanding and text
extraction from visual sources. The image captioning data connect visual inputs with corresponding
textual descriptions, enhancing the model’s ability to associate images with relevant language. The
text-only datasets ensure that the model maintains strong language understanding capabilities even
when visual inputs are absent. The distribution of this data is illustrated in Figure 2b. During this
pre-training phase, only the vision encoder and MLP projector were trained together for 4 epochs,
while the LLM remained frozen.

• Fine-tuning: The fine-tuning stage of H2OVL-Mississippi-2B utilized 12 million conversation ex-
amples to enhance task-specific performance across various domains. The primary tasks included
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general question-answering (QA), which focused on handling multi-image, single-image, and text-only
inputs. Additionally, OCR and document understanding were emphasized for extracting structured
information from both multi- and single-image sources. Complex tasks involving reasoning, logic, and
programming were also incorporated, requiring problem-solving with mixed input types. Furthermore,
the fine-tuning covered captioning, textbook Q&A, image comparison, and chart and table understand-
ing to ensure broad task coverage and versatility, as illustrated in Figure 3b. During this stage, the full
model was trained for a total of 3 epochs.

Training hyperparameters are summarized in Table 2. Data composition statistics are presented in Table 1.

Table 1: Summary of data for pre-training and fine-tuning of H2OVL-Mississippi models
Task Composition Input Type 2B-pretrain 2B-finetune 0.8B-pretrain 0.8B-pretrain 0.8B-finetune

-step1 -step2

General QA multi-image 332,000 332,000
single-image 1,967,797 1,781,737
text-only 143,000 1,219,628 1,196,553

Reasoning, logic, multi-image 256,995 215,000 41,995
maths, programming single-image 876,245 518,929 705,340

text-only 899,960

Captioning multi-image 36,000 36,000
single-image 1,966,936 1,096,585 196,692 327,756 113,376

OCR, document understanding, multi-image 1,273,215 1,273,215 1,273,215
text transcription single-image 3,141,265 1,626,087 157,063 3,737,088 4,389,070

Textbook, academic questions multi-image 374,575 374,575
single-image 343,761 17,389 19,249

Chart, figure, table understanding single-image 1,506,542 1,497,152 1,344,415

Differences between images multi-image 138,000 138,000

Total 5,251,201 11,947,390 353,755 11,445,394 7,886,660

Table 2: Hyperparameters for pre-training and fine-tuning of H2OVL-Mississippi models
2B-pretrain 2B-finetune 0.8B-pretrain-step1 0.8B-pretrain-step2 0.8B-finetune

freeze VIT ✗ ✗ ✓ ✓ ✗
freeze LLM ✓ ✗ ✓ ✗ ✗
freeze MLP ✗ ✗ ✗ ✗ ✗
image size 448 448 448 448 448
max num tiles 6 6 6 6 6
learning rate 4e-5 4e-5 → 2e-5 1e-4 3e-5 1e-5
scheduler cosine cosine cosine cosine cosine
batch size 256 256 256 256 256
weight decay 0.01 0.03 0.01 0.01 0.01
epochs 4 2 → 1 1 1 1
hardware 8 × H100 8 × H100 8 × H100 8 × H100 8 × H100
hours of training 36 158 0.8 11 34

6 Evaluation

In this section, we present evaluation of H2OVL-Mississippi across a variety of dimensions, focusing on (1)
General Vision-Language benchmarks, and (2) OCR and document-centric benchmarks.

6.1 General Vision-Language benchmarks

Table 3 provides a comprehensive comparison of models across a range of benchmarks, evaluating their
strengths and weaknesses. It includes several categories of models, such as current state-of-the-art, legacy
state-of-the-art, and similarly sized models. Each model’s performance is assessed using benchmarks like
MMBench [14], MMStar [15], MMMU [16], Math Vista [17], Hallusion Bench [18], AI2D [19], OCRBench [20],
and MMVet [21], offering insights into their versatility and specialized capabilities.

Models classified under legacy state-of-the-art, such as GPT-4v (1106, detail-high) and Gemini-1.0-Pro, illustrate
how quickly the field evolves. These models, though previously considered cutting-edge, now achieve lower
scores, especially on advanced benchmarks like MMStar and OCRBench. For instance, GPT-4v scores 56.4 on
average, with an OCRBench score of 678, which is considerably behind the newer models.

Within the category of similar size models, H2OVL-Mississippi-2B demonstrates competitive performance, with
an average score of 54.4. H2OVL-Mississippi-2B excels in benchmarks like Math Vista (56.8) and OCRBench
(782), positioning it as a strong model for multimodal and OCR tasks. Compared to its closest peer, Qwen2-VL-
2B, H2OVL-Mississippi-2B shows a slight lag in benchmarks like MMBench and MMStar but remains strong in
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OCR-related tasks, where it outperforms several similarly sized models. The trend among similar size models
highlights that while models like H2OVL-Mississippi-2B and Qwen2-VL may not yet reach state-of-the-art
performance, they are highly effective for specific use cases such as text extraction and mathematical reasoning
tasks.

We utilized VLMEvalKit2 [22] for measuring the performance of the models. For both models, we set the
maximum tile number for each image to 6. Additionally, the MSAC image preprocessing function was
implemented for H2OVL-Mississippi-2B.

Table 3: Performance Comparison of Models Across Multiple Benchmarks
Models Params (B) Benchmark Scores

Avg. Score MMBench MMStar MMMUVAL Math Vista Hallusion AI2DTEST OCRBench MMVet
(8 Benchmarks) V1.1TEST Bench

Current state of the art
Qwen-VL-Max-0809 72 74.4 85.8 69.2 64.6 68.3 59.2 88.1 881 72.3
GPT-4o-20240806 - 71.5 80.5 64.7 69.9 62.7 54.2 84.7 805 75.1
InternVL2-Llama3-76B 76 71.0 85.5 67.1 58.3 65.6 55.4 87.6 842 64.4
Claude3.5-Sonnet - 67.9 78.5 62.2 65.9 61.6 49.9 80.2 788 66.0
Gemini-1.5-Pro - 64.4 73.9 59.1 60.6 57.7 45.6 79.1 754 64.0

Legacy state of the art
GPT-4v (1106, detail-high) - 56.4 65.5 50.4 59.3 48.2 39.3 71.4 678 49.0
Gemini-1.0-Pro - 56.1 69.7 38.6 49.0 46.5 45.7 72.9 680 58.6
Claude3-Sonnet - 53.5 63.9 44.2 47.4 45.0 41.3 69.9 646 51.7
Qwen-VL-Plus - 52.2 66.2 39.7 39.8 37.6 40.6 65.7 726 55.7

Similar size models
Qwen2-VL-2B 2.1 57.2 72.2 47.5 42.2 47.8 42.4 74.7 797 51.5
H2OVL-Mississippi-2B 2.1 54.4 64.8 49.6 35.2 56.8 36.4 69.9 782 44.7
InternVL2-2B 2.1 53.9 69.6 49.8 36.3 46.0 38.0 74.1 781 39.7
Phi-3-Vision 4.2 53.6 65.2 47.7 46.1 44.6 39.0 78.4 637 44.1
MiniMonkey 2.2 52.7 68.9 48.1 35.7 45.3 30.9 73.7 794 39.8
MiniCPM-V-2 2.8 47.9 65.8 39.1 38.2 39.8 36.1 62.9 605 41.0
InternVL2-1B 0.8 48.3 59.7 45.6 36.7 39.4 34.3 63.8 755 31.5
PaliGemma-3B-mix-448 2.9 46.5 65.6 48.3 34.9 28.7 32.2 68.3 614 33.1
H2OVL-Mississippi-0.8B 0.8 43.5 47.7 39.1 34 39 29.6 53.6 751 30.0
DeepSeek-VL-1.3B 2.0 39.6 63.8 39.9 33.8 29.8 27.6 51.5 413 29.2

6.2 OCR and Document centric benchmarks

OCR Benchmarks. We conducted a detailed comparative analysis of various vision-language models
(VLMs), including the latest general OCR model (e.g., GOT-OCR2.0[23]), across multiple evaluation tasks
from OCRBench[20], a benchmark designed to rigorously assess OCR performance.The tasks covered in-
clude Text Recognition, Scene Text-centric VQA, Document-oriented VQA, Key Information Extraction
(KIE), and Handwritten Mathematical Expression Recognition (HMER). Both H2OVL-Mississippi-0.8B and
H2OVL-Mississippi-2B demonstrated competitive performance across the board.

The H2OVL-Mississippi-0.8B model stands out by achieving the highest score in OCRBench Text Recognition
(274), significantly outperforming all other models, including those with much larger parameter sizes, such as
InternVL2-26B and MiniCPM-V2.6. This result highlights the model’s efficiency and capability, particularly for
OCR-specific tasks. Despite having fewer parameters, the 0.8B model consistently surpasses larger models in text
recognition, making it an optimal choice for resource-constrained environments where high OCR performance is
required.

The H2OVL-Mississippi-2B model also demonstrates robust performance across a range of tasks. With a total
score of 782, it outperforms several models that have much larger sizes, proving its overall effectiveness. In
particular, the 2B model shows competitive results in Text Recognition (252), Scene Text VQA (171), Document-
Oriented VQA (140), and KIE (166), making it an excellent candidate for general document understanding and
extraction tasks.

Table 4 presents detailed OCRBench results among comparable models. To further contextualize the results, we
included two traditional OCR text recognition models in our analysis: DocTR-default [24] and DocTR-V2M,
the latter being a retrained version developed internally by our company.

Text Oriented VQA benchmarks. In addition to the OCRBench evaluation, we further investigate our model’s
detailed visual perception capabilities by assessing its performance on text-oriented VQA datasets, includ-
ing TextVQA [25], DocVQA [26], and InfoVQA [27]. As summarized in Table 5, H2OVL-Mississippi-2B
demonstrates commendable overall performance across all tasks. Notably, it achieves better or comparable
scores even against much larger models like Cambrian-13B (13B parameters), showing its efficiency in han-
dling text-based VQA tasks with significantly fewer parameters. Despite its smaller size (2.1B parameters),
H2OVL-Mississippi-2B performs competitively on TextVQA and DocVQA and demonstrates steady results on
InfoVQA, underscoring the model’s robustness in diverse visual question-answering contexts.

2commit:e254f006fb389dc7877f64d517c14d855f7ac759
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Table 4: Performance Comparison of Models on OCRBench
OCRBench Scores

Models Params Language Model Vision Model Total Text Scene Text Document KIE HMER
(B) Recognition VQA Oriented VQA

MiniCPM-V2.6 8 Qwen2-7B SigLIP-400M 836 259 184 169 182 42
InternVL2-26B 26 internlm2-chat-20b InternViT-6B 823 251 184 153 168 67
Qwen2-VL-2B-Instruct 2.1 Qwen2-1.5B ViT-600M 812 265 172 146 174 55
MiniMonkey 2.2 InternLM2-1.8B InternViT-300M 792 250 178 126 171 67
InternVL2-4B 4 Phi-3 InternViT-300M 785 236 170 154 158 67
InternVL2-2B 2 InternLM2-1.8B InternViT-300M 785 246 170 133 167 69
H2OVL-Mississippi-2B 2 H2O-Danube2 1.8B InternViT-300M 782 252 171 140 166 53
InternVL2-1B 0.8 Qwen2-0.5B InternViT-300M 755 242 164 127 150 72
H2OVL-Mississippi-0.8B 0.8 H2O-Danube3 0.5B InternViT-300M 751 274 162 112 152 51
MiniCPM-Llama3-V2.5 8 Llama-3-8B-Instruct SigLIP-400M 725 221 171 125 155 53
InternVL-Chat-V1.5 26 InternLM2-20B InternViT-6B 722 236 181 149 153 3
Mini-InternVL-Chat-2B-V1.5 2 InternLM2-1.8B InternViT-300M 652 222 161 126 139 4
Phi-3-Vision 4.2 Phi-3 CLIP ViT-L/14 640 196 159 137 148 0
Mini-InternVL-Chat-4B-V1.5 4 Phi-3 InternViT-300M 640 193 160 146 135 6
GOT-OCR2.0 0.6 Qwen2-0.5B VitDet-80M 622 245 99 83 164 31
PaliGemma-3B-mix-448 2.9 Gemma-2B SigLIP-400M 613 242 165 88 118 0
MiniCPM-V-2 2.8 MiniCPM-2.4B SigLIP-400M 596 243 168 100 85 0
DocTR-default 0.05 - - - 177 - - - -
DocTR-V2M(H2O.AI) 0.05 - - - 256 - - - -

Models Params (B) TextVQA DocVQA InfoVQA

Qwen-VL-Max-0809 72 85.5 96.5* 84.5*
GPT-4o-20240806 - 70.6 86.1 66
Qwen2-VL-2B 2.1 79.7 89.2 64.1
H2OVL-Mississippi-2B 2.1 75.1 83.8 43
InternVL2-2B 2.1 73.4 86.2 57.7
MiniCPM-V-2 2.8 73.2 69.6 38.2
Cambrian-13B 13 72.8 73.7 44.3
Phi-3-Vision - Microsoft 4.2 72.4 84.3 49.9
PaliGemma-3B-mix-448 2.9 68.1 73.9 34.1

Table 5: Comparison on Text-Oriented VQA. Performance comparison with SoTA and similar sized models on public text-oriented VQA
benchmarks includes: TextVQA[25], DocVQA[26] and InfoVQA[27]. ‘*‘ denotes numbers obtained from test set. Others are from val set.

Document Type

Models Params(B) Receipts Drivers Licenses Checks Avg.

GPT-4o-20240806 - 80.2 81.7 77.6 79.83
Claude-3-5-sonnet-20240620 - 94.3 80.5 64.6 79.80
InternVL2-40B 40 80.1 68.7 56.8 68.53
InternVL2-26B 26 76.4 64.1 43.4 61.30
H2OVL-Mississippi-2B 2.1 82.0 56.4 41.5 59.97
InternVL2-8B 8 71.6 60.7 39.1 57.13
MiniCPM-V-2-6 8 62.0 58.3 46.3 55.53
InternVL2-4B 4 58.5 53.4 42.1 51.33
InternVL2-2B 2.1 60.5 49.2 36.5 48.73
InternVL2-1B 0.8 56.6 41.5 30.7 42.93

Table 6: Comparison on Information Extraction Tasks. Performance comparison with SoTA and similarly sized models on document-specific
information extraction tasks. The evaluation is conducted on real-world documents across various types, including receipts, driver’s licenses,
and checks. Accuracy is reported as the average of perfect match rate, effective TED, and F1-scores regarding JSON parsing rates. The best
performance for each task is highlighted in bold, while the second-best is shown in blue.
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Document specific information extraction benchmarks. To further explore the document understanding
capabilities of the H2OVL-Mississippi models in real-world scenarios, we curated three datasets that cover some
of the most common business documents: receipts, driver’s licenses, and checks. Using prompts similar to those
listed in Figure 4 , we evaluated the model on information extraction tasks. Performance was measured based on
effective Tree Edit Distance (TED) and effective F1 derived from JSON parsing rate, and the perfect match rate.
The final accuracy score was an average of these metrics for each document type.

The quantitative results are summarized in Table 6. The H2OVL-Mississippi-2B model excelled in processing
receipts, achieving the second-highest accuracy of 82, outperforming much larger models such as InternVL2-
40B, InternVL2-26B, and GPT-4o. This underscores the model’s efficiency and strong capability in handling
specific document types, despite its relatively smaller size (2.1B parameters). On driver’s licenses and checks,
H2OVL-Mississippi-2B also showed competitive results, with scores of 56.4 and 41.5, respectively. While it
did not surpass the top-performing larger models in these tasks, it outperformed some of the larger models and
ranked above other similar size models. its consistent performance across different document types highlights its
effectiveness in balancing accuracy and computational efficiency.

7 Conclusions and Future Work

We introduce H2OVL-Mississippi, a series of small language models consisting of H2OVL-Mississippi-2B and
H2OVL-Mississippi-0.8B released open source under Apache 2.0. Our models show competitive performance
compared to popular models of similar size across a variety of benchmarks, including general vision-language
evaluations, OCR and document-centric tasks. H2OVL-Mississippi is built on our continuous efforts to contribute
to the growing ecosystem of open source small language models. We are confident that our models can play
a pivotal role in a wide range of applications, from typical chatting and fine-tuning for specific use cases to
on-device offline applications on mobile phones or edge devices.

Through this project, we gained valuable experience in the end-to-end development of vision-language models,
including data collection and preparation, input preprocessing, model architecture selection, training, and
hyperparameter tuning. These learnings have prepared us to tackle more complex challenges in future work,
such as:

• Improving multilingual capabilities to extend model support for diverse languages and scripts.

• Incorporating additional modalities, such as video and audio, to enable richer multimodal under-
standing.

• Scaling up model sizes to 4B, 7B, or even larger, to further enhance performance and address more
complex tasks.

• Addressing agent-based tasks that involve decision-making and real-world interaction, enabling the
models to function effectively in dynamic environments.

• Enhancing fine-grained visual capabilities to improve performance in tasks that require distinguish-
ing between highly similar objects or parsing intricate scenes.
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Figure 4: Example outputs with H2OVL-Mississippi models.
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